How to Deliver an Effective Presentation

Caprice Christian Greenberg, MD, MPH
Professor of Surgery
Morgridge Distinguished Chair in Health Services Research
University of Wisconsin Department of Surgery
Madison, WI, USA
Disclosures

I serve as a consultant for Johnson and Johnson on their Global Education Council.

This is not relevant to the content of this talk.
Presenting Your Work

• Critical to your academic advancement
• Opportunity to get your name and research interests known
• Receive feedback from peers and experts
Types of Academic Presentations

- Poster session – paper/canvas or electronic
- Moderated poster sessions
- Quick shot presentations
- Scientific session presentations
- Plenary session presentations
- Invited talks
 - Keynote addresses and named lectureship at national meeting
 - Grand rounds and visiting professorships
Adhere to Rules and Guidelines

• Poster presentations
 – Size regulations
 – Orientation
 – Recommended template

• Oral presentations
 – Strictly adhere to time restrictions for any podium talk
 – Leave time for questions
 – You are almost never faulted for being shorter than allotted time
Designing Effective Posters

Title
Authors and Affiliations

Introduction
Why?
Purpose/Hypothesis

Methods
How?

Results
What?

Conclusions
So what?

Slide Courtesy of Scott A. LeMaire, MD
Moderated Poster Session

• Oral presentation without slides so PRACTICE

• Follow the general layout of your poster

• Highlight key figures

• Anticipate questions
Oral Presentations
Principles of Effective Presentations

- Know your audience
- Play to your strengths
- Use images as much as you can to enhance your message
- Design slides for the back of the room
- Don’t overcrowd slides
- Don’t read your slides
- If you must, use animations sparingly to be effective
Know Your Audience

What you want to say.

What they’re interested in.

Relevance
Play to Your Strengths

Humor
Data
Self-deprecation
Anecdotes
Hand motions for emphasis
Which Is Better?

• Breast density has been associated with an increased risk of breast cancer
• Breast density refers to the relative amount of fibro-glandular breast tissue (white) to fatty tissue (black) as seen on mammogram
• The RR is calculated relative to scattered fibro-glandular density (RR=1)
 – Fatty RR = 0.5
 – Heterogeneously dense RR = 1.5
 – Extremely dense RR= 2.0
Which Is Better?

Breast Tissue Density
Risk for Breast Cancer

Fatty
RR 0.5

Dense
RR 1.0
RR 1.5
RR 2.0
Design Slides for Back of the Room
Can your audience read this? (8-point)
Can your audience read this? (9-point)
Can your audience read this? (10-point)
Can your audience read this? (12-point)
Can your audience read this? (14-point)
Can your audience read this? (16-point)
Can your audience read this? (18-point)
Can your audience read this? (20-point)
Can your audience read this? (24-point)
Can your audience read this? (28-point)
Can your audience read this? (32-point)
Can your audience read this? (36-point)
Can your audience read this? (40-point)
Can your audience read this? (44-point)
Can your audience read this? (48-point)
Can your audience read this?
Don’t Overcrowd Your Slides

• Don’t put anything on your slide that you don’t refer to or discuss. The audience will be reading it and trying to figure out what it is and why it is there.

• On the other hand, you don’t need to type everything that you say. While it may feel safe to you, slides that are too text heavy tend to lead to a lack of focus and retention amongst your audience and do not help you to convey your point.
Effective Use of Animations

Which General Surgeons Earn More: Men or Women?

$347K

$271K

$76,000 per yr x 30 yr career = $2.3 MILLION
Ineffective Use of Animations

• Don’t do this!
• Don’t do this!
• Don’t do this!
• Don’t do this!
• Definitely don’t do this!
Title Slide

• Introduces your topic

• Introduces your credentials

• Acknowledges coauthors

• Highlights your institution

Evaluation of a Statewide Surgical Coaching Program for Continuing Professional Development

Lane L. Frasier, Hala N. Ghousseini, Heather L. Beasley, Sudha R. Pavuluri Quamme, Nicole A. Brys, Douglas A. Wiegmann, Caprice C. Greenberg

Women in Leadership

Caprice Christian Greenberg, MD, MPH
Professor of Surgery
Morgridge Distinguished Chair in Health Services Research
University of Wisconsin - Madison
Introduction

• Provides background and rationale for your work

• Acknowledges previous related work

• Demonstrates a knowledge gap

• Builds to a hypothesis, objectives, and/or study aims
Introduction

Post-Treatment Surveillance

- Cuts across cancer sites
- Lack of data = variations
- Guidelines on expert consensus
- Not tailored to individuals
- Prospective RCT is not feasible at this time
Study Aims

Study Aim

- Evaluate the current utilization of surveillance imaging considering intent of scan
- Assess the effectiveness of routine surveillance versus symptom-based imaging on the improved detection of distant recurrence and survival considering subtypes
- Evaluate whether sufficient preliminary evidence to warrant a pragmatic trial
Methods

• Provide essential details

• Tailor description to your audience

• Build diagrams and use animation to describe your study approach and break up word walls
Sample Flow Chart

1,231 eligible facilities; 11,478 sampled patients

99% of facilities participated in study

Total: Sample: 1,217 facilities 11,360 patients

Missing def surgery date; Def surgery >365 days from diagnosis; Recurrence or new primary or death < start of follow-up period, abstraction start date within 180 days of diagnosis (n=507)

Final Sample N=10,853
Randomization

<table>
<thead>
<tr>
<th>Surgeon</th>
<th>Intervention</th>
<th>Block</th>
<th>Coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coaching</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Coaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Surgus™</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Coaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Coaching</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Coaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Surgus™</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Coaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Coaching</td>
<td>E</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>Surgus™</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

• Descriptive Statistics

• Use figures and tables as much as possible

• Often try displaying data in different ways to determine which is most effective
Results

<table>
<thead>
<tr>
<th>Clinical Values</th>
<th>Intervention (n=200)</th>
<th>Control (n=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%) with data</td>
<td>175 (88)</td>
<td>180 (90)</td>
</tr>
<tr>
<td>Weight, mean (SD), kg</td>
<td>70 (12)</td>
<td>68 (12)</td>
</tr>
<tr>
<td>Cholesterol, mean (SD), mg/dL</td>
<td>212 (10)</td>
<td>214 (13)</td>
</tr>
<tr>
<td>Blood pressure, mean (SD), mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>118 (20)</td>
<td>117 (19)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>70 (13)</td>
<td>69 (20)</td>
</tr>
</tbody>
</table>

The bar chart shows the distribution of various clinical values and intervention outcomes.
Results

<table>
<thead>
<tr>
<th>Intent of Scan</th>
<th>Percent (N=10,853)</th>
<th>n/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ Cancer-Related Scans</td>
<td>47.7</td>
<td>5,177/10,853</td>
</tr>
<tr>
<td>1+ Surveillance Scans</td>
<td>29.7</td>
<td>3,223/10,853</td>
</tr>
<tr>
<td>2+ Surveillance Scans</td>
<td>12.0</td>
<td>1,302/10,853</td>
</tr>
</tbody>
</table>

Unadjusted
- ER/PR+ HER2 -
- Triple Negative
- HER2 +

Adjusted/Weighted
- ER/PR+ HER2 -
- Triple Negative
- HER2 +

<table>
<thead>
<tr>
<th>Hazard Ratio</th>
<th>Unadjusted</th>
<th>Adjusted/Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Pie Chart
- **Body only** 47%
- **Bone only** 21%
- **Bone+Body** 19%
- **Bone+Brain** 4%
- **Brain only** 3%
- **Bone+Body+Brain** 4%
Conclusions

• Acknowledge study limitations

• Summarize key findings in context of introduction

• Emphasize implications and significance

• Discuss future directions

Summary and Conclusions

- Surgical coaching is associated with increased implementation of advanced repair techniques in practice
- Live coaching was more effective than asynchronous video-based feedback
- Implementation of larger coaching programs may lead to improvements in outcomes for patients with incisional hernias
Acknowledgements

- **WSCP Team**
 - Heather Beasley, PhD (Education)
 - Janet Dombrowski, BSN, MHSA (Coach)
 - Hala Ghousseini, PhD (Education)
 - Sudha Pavuluri Quamme, MD, MS (Surgery)
 - Douglas Wiegmann PhD (Cognitive Engineering)

- **Project ADOPT – UW**
 - Carla Pugh, MD, PhD
 - Jacob Greenberg, MD, EdM
 - Sarah Sullivan PhD
 - Sally Jolles, MS

- **MBSC Collaborators**
 - Justin Dimick, MD, MPH
 - Nancy Birkmeyer, PhD
 - Jonathan Finks, MD
 - Oliver Varban, MD

- **Wisconsin Partnership Program**

- **Advisors**
 - **Coaching**
 - Daniel Grabois, PhD (Music)
 - Felicia Moy, PhD (Music)
 - Nichole North Hester, PhD (Education)
 - Bret Bielema (Football)
 - Joe Krabbenhoft (Basketball)
 - Lamont Paris (Basketball)
 - Rob Porteus (Athletics Video Services)
 - Bo Ryan (Basketball)
 - **Surgery**
 - Jon Gould, MD
 - Peter Janu, MD
 - Alysandra Lal, MD, MPH
 - Jeffrey Landercasper, MD
 - Gordon Telford, MD
 - **Wisconsin Surgical Society**
 - Michael Garren, MD
 - Shanu Kothari, MD
 - Dean Klinger, MD
Final Tips and Tricks

- Practice, Practice, Practice!
- Pick 3 audience members in different parts of the room and make eye contact
- Anticipate questions and prepare answers
- Bring back-up on a jump drive
- Preview slides and especially video in the room
- Check podium and electronics
- Stay on time
Thank you!

greenberg@surgery.wisc.edu

Acknowledgements

Jacob A. Greenberg, MD, EdM
Scott A. LeMaire, MD
Clifford S. Cho, MD