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Artificial Intelligence Ml AAS

Academic Surgery

A field of computer science that
aims to make computers reason and
act more like humans




Machine Learning 'Illl'ézg%oﬁﬁm

The primary methodology behind
AL

A collection of methods for inferring

predictive models from sets of training
instances.

Methods for training a computer to
predict “unknowns” from a set of
“knowns.”




Natural Language Processing (NLP) ] AAS

Sets of instructions or algorithms that
allow computers to recognize and
interpret human language (machine
learning is one approach for
accomplishing this task)
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Big Data refers to large and complex
datasets prohibited from being
processed with common or traditional
database management tools and
traditional data processing
applications.
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C |Traditional | Big Data

Database
Management
Software

Data Processing
Tools

New Data
Acquisition

Data Types

Excel
Access

R
STATA

slow

1-2

Cloud Computing
Distributed databases
(Hbase)

Hadoop
MongoDB

fast

numerous




4 Dimensions of Big Data ) AAS

1.VOLUME Velocity I Volume

2.VARIETY -
- BIG

3.VERACITY

4 VE I_ OC I TY Veracityl Varie3;cy




TYPES OF DATA

STRUCTURED DATA

UNSTRUCTURED DATA

Electronic 1 Medication 2 Medication e
pill dispensers I_I prescribed instructions Medlc.at|.0n taken
Diaries
1 oTC o : _
Medication FrEc Hearfiatm Medication filled Dose Route Allergies Herbal remedies
| | i .
Alternative
= NDC RxNorm Oué;%trﬁ)gec&_!et therapies
Demographics k HL7 i 1
Encounters Employee sick days Visit type and time Chief complaint
Diagnoses Death records SNOMED  ICD-9 Differential
NI dlaglthSIS_“
Procedures CPT ICD-9 3
E HOME B
i - PERSONAL TREATMENTS, ; || tC!NE Pathology,
Diagnostics (ordered) HEALTH MONITORS.  # histology REPORTS
RECORDS TESTS ECG Radiology A e =
Diagnostics (results) '-\?i'ia‘{a_c},-'gii' ‘TRACINGS .
Genetics i PATIENTS : 23andMe.com SNPs, arrays E : : E
R - i LIKEME.COM : . 3 = 3 3
Social history : { Police records Tobacco/alcohol use DIGITAL: i BLOGS ;
. - i : {CLINICAL: 7 = E————1
Family history Ancestry.com ! NOTES. i . H
Symptoms Indirect from OTC purchases .~""i5HYS']'CA|_“"'A.‘ : { TWEETS |
Lifestyle Fitness club memberships, CSRESEIJT .XAMINATIONE’ : E
v grocery store purchases 3 § S H
- PURCHASES .- PAPER :| i FACEBOOK { —
Socioeconomic Census records, Zillow, LinkedIn ™. FYCLINICAL ! POSTINGS E

Social network

Facebook friends, Twitter hashtags

*NOTES.

Environment

Climate, weather, public health databases,
HealthMap.org, GIS maps, EPA, phone GPS

News feeds

-«

Probabilistic linkage to validate existing data or fill in missing data

Examples of biomedical data

; Pharmacy data .

l:l Claims data

Data outside of health care system

health record) data

Health care center (electronic

Ability to link data to an individual
m Easier to link to individuals
m Harder to link to individuals

Registry or clinical trial data )
m Only aggregate data exists

Data quantity
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« Open source project run

by Apache
« Cheaply process large
amounts of data, Ty .’
regardless of its N @ =
structure = ézé =
* The driving force behind )
T I o~
big data industry — = AL
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HADOOP

Distributed processing of
large datasets on clusters
of computers

Parallel computation,
workflow

Massive scalability and
speed

HDFS (Hadoop Distributed
File System) - runs in a
clustered environment

MapReduce —
programming paradigm for
running processes over
clustered environments
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« lterate over a large
number of records

e Extract something  input Splitting Mapping Shuffling Reducing Final result
of interest from
each record Bear, 1 »| Bear,2
Deer, 1 » Bear, 1
° Shuffle and sort Deer Bear River »| Bear, 1
. . River, 1
intermediate /' Gar,
Car, 1 » Car, 3 » Bear 2
results Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River » Car Car River » Car, 1 Deer, 2
° Ag greg ate Deer Car Bear River, 1 River, 2
intermediate e e —
Deer, 1
rESU|tS Deer Car Bear » Car, 1 : : -
° Generate a f|na| Bear, 1 River, 1 »{ River, 2

River, 1

output
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What is Machine Learning? i Vs,

A collection of methods for inferring predictive
models from sets of training instances

OR
The methods behind artificial intelligence

OR

The science of getting computers to act without
specific programming
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Machine Learning: Unsupervised

Methods to discover patterns from a
dataset that has not been classified,
labeled, or categorized. Commonly,
unsupervised machine learning
methods cluster the cases in a dataset
by their similarity or differences of their
features. 1 e




Machine Learning: Supervised ) AAS

Methods to make predictions using a
dataset that Is labeled or classified by
the outcome of interest with the
purpose of then applying the algorithm
to a test (unlabeled) set. —




Machine Learning is All Around U§||||'
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Identification
» of required
data
v
o |te rative Data pre-processing
 Open
. ] Definition of
 Consider training set
presentation
° audlence - Algorithm
Dat t selection
. ata Sets
* R eqgu ires Parameter tuning
p I an n_l n g Evaluation
« Consider n with test set
No /\Yes
OK?

A 4

Classifier
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Continuous Categorical

Regression Logistic Regression
linear
polynomial
Decision Trees KNN
Random Forests Trees
Neural Networks Bayesian
SVM

Rule-based
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Node 1
Total Population
- . O st 00
» Classification And e
- - No Late AKI
Regression Tree o ' =l m Lote A
- Terminal Node
» predicts late acute e =
- - - . Class Cases % foss Ceses 14
kidney injury in burn it = S
. N=111 s
patients. o =
. Ees! b’rBDs-ﬂ.M Loweledi{rBD>-11.41
« Uses segmentation by o o
Class Cases % Closs Cates %
outcome label =T s 3%
. N=28 - [—
« Non-parametric — rules m— o . 4
. . Lowest 24 FTjokicoes = 83 Lowest 24 Hr} glucose > 83
« Stopping, pruning —y s
Class Cases % Clazs Ca‘s‘e 2 6?7
N=16
— 1 -
Schneider DF, et al. Predicting acute kidney e e

Node 4 Node S

injury in burn patients: A CART analysis.
J Burn Care Res, 2012; 33:242-251 B T s & T

W 12 25 B 9 563

N=49 —  N=16
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Bayesian Networks il AAS

Normal/Abnormal
PTH Secretion

Probability Table for Age

GroupJ0-535 | 535-92+

Normal 0.54 0.46
Abnormal  0.27 0.73 <

Age RGender Ca @ PTH A& VitD
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Centered
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Support Vector Machine [ AAS
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Learning Ensembles

* Learn multiple alternative definitions of a concept using
different training data or different learning algorithms.

* Combine decisions of multiple definitions, e.g. using

weighted voting.

Learnerl Learner2 [+ « « « « « « Learnerm

Model Combiner Final Model
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. . o ©
Adaptive Boosting Wealk e %o
) Classifier1 ~j o _-----"""
e Output of multiple, “weaker” @ o
classifiers are combined into ® 9

a weighted sum in the final,

“ ” HH p
boosted” classifier Weights —0'—‘..‘.

. Increased
* Adaptive - "weak” learners ﬁ.\.iﬂ.
are adjusted to account for Weak ' @
misclassified instances by Classifier 2 —— g
previous learners
. . . Weak » =
* Adaptive Boosting with classifier 3 e
BayesNet as the “weak () '1. .
learners” Final classifier is \

. .. |
linear combination of .,“.

weak classifiers
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* Some ML methods really
are ensembles

* Example: Random Forests
e Ensemble of Trees

* Uses bagging: each
classifier gets a vote
(unweighted)

* Re-samples the training
set

e Randomness to tree
induction

Instance

Random Forest / / \
o o o
a » 3 s ° n
b 4 b 4 v i b 4 K @ ® b 4 * b 4 b 4
® 20 » ‘. o9 » .. o9 » e 2@ 0 L R ‘ o ¢ 29 9
Tree-1 Tree-2 free-n
Class-X Class-Y Class-X

: !
{ Mayonity Voung

Final Class
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