Funding Your Research: How to Start and How to Keep it Going

Caprice Christian Greenberg, MD, MPH
Professor of Surgery, Engineering, Emergency Medicine and Population Sciences
Morgridge Distinguished Chair in Health Services Research
Vice Chair of Research, Department of Surgery
Director, Wisconsin Surgical Outcomes Research (WiSOR) Program
University of Wisconsin - Madison
Disclosures

• Consultant for the Johnson & Johnson Institute as a member of the Global Education Council
• This is not relevant to the content of this talk
Different Types of Research

• Clinical outcomes research projects – Important for promotion, engage students and residents
• Collaborator – Key personnel on other people’s grants
 – Supply patients and tissue for translational research
 – Provide clinical expertise for engineering project
• Program - An externally-funded body of work around a unified theme with which people associate your name
 – Basic science, translational, clinical trials, HSR
The Facts of (Funded) Life

• In most environments, even with good mentorship and an established research group, you will need money and/ or resources

• Your first grant is unlikely to be from NIH so look for local funding opportunities

• Don’t be afraid to spend your start-up funds

• You need resources to be successful
Start-up Package for Funding

- Define protected time, compensation structure must support
- Written commitment of mentorship and collaborations
- Support for equipment, lab set up, programming, biostatistics
- Research assistant and level (tech vs PhD) – support for FTE vs start-up coverage
- Access to core resources
- Separate, contiguous space with other like-minded researchers
- Define “progress towards funding”; what metrics define success?
Set aside enough time

- Protected time is more important than “talent,” especially early in your career.
- Creative thought requires time where you are not distracted by clinical or administrative duties.
- It takes a long time to write a fundable grant so be realistic in your (and your boss’s!) expectations.
- Spend time getting your aims page right. Everything else will follow.
There is No One Right Path
Who Should Apply for a CDA?

• Additional supervised career development
• Training needs
• Mentorship needs
• Demonstrated gap that is necessary to build an independent research program
• Unique opportunity to protect time for research and (re)-immerse in academic pursuits after training
A Few Tips for Surgeons with CDAs

• Make sure they believe you will have 75% protected time
• Make sure you have methodological expertise
• A multi-disciplinary mentoring team is key
• Primary mentor should be at your institution
• Get resources that you can use to lure other disciplines to work with you!
Pros and Cons of a CDA

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandates protected time.</td>
<td>Restricting clinical time to 25% is a struggle.</td>
</tr>
<tr>
<td>Salary support creates independence; the award is even transportable.</td>
<td>$25,000 does not cover the cost of large research projects.</td>
</tr>
<tr>
<td>Long-term funding promotes greater professional development, ensures</td>
<td>The mentor/mentee component could set the mentee up to be used as “free labor.”</td>
</tr>
<tr>
<td>employment and thereby creates a sense of security.</td>
<td>Need supplemental sources of funding for:</td>
</tr>
<tr>
<td>Legitimizes the researcher.</td>
<td>- Administrative support</td>
</tr>
<tr>
<td>Jump-starts a career.</td>
<td>- Unexpected project expenses</td>
</tr>
<tr>
<td>Allows time to study with emphasis on interdisciplinary exposure.</td>
<td>The 75% support prevents awardees from applying for other federal grants.</td>
</tr>
</tbody>
</table>
Professional Societies

- Most sponsor career development and/or research awards
- Apply to more than one
- Identify society funding priorities and follow the rules
- Study list of previous winners and funded projects
- If applying for a CDA, check for joint funding opportunities
Society CDA Opportunities

• Large and prestigious
 – American Cancer Society

• Prestigious and flexible
 – American Surgical Association Foundation

• Provide matching funds for federal CDA
 – Information available on the ACS website

• Can be smaller but build track record of funding and provide pilot data for the next grant
Intramural/Institutional Funding

• Departmental/ institutional start-up funds

• Intramural grants
 - Fund pilot and collaborative clinical research projects to generate preliminary data for submission of a research grant application
 - Examples include NCI Cancer Center, NIH CTSA, large programs, University endowments/awards
NIH Clinical and Translational Science Awards (CTSA): U54

62 institutions; 31 states

Getting Your First Grant

• These first few years on guarantee are a gift. DON’T WASTE IT. You don’t get a second chance.
• Money is money – an institutional K or society CDA is a great place to start and can convert to an individual K award.
• You will need significant support above and beyond the K. Start-up funds, matching funds, or another grant are a must.
• But MOST OF ALL YOU NEED TIME TO WRITE
You Got Your First Grant – Now What??
The next grant…and the next...

- Know the timelines and burn rates for your grant
- Work backwards from the completion date and account for the need to resubmit
- Have a contingency plan
- Build a portfolio of funding that supports your program from different sources with different timelines
- Money is money – any opportunity for hard money should be seized
Start Small but Think Big

Health care

Surgery

Specialty (e.g., general surgery)

Subspecialty (e.g., colorectal)

Disease focus (e.g., IBD)

Importance (& Fundability)

Our clinical practice

Basic science focus
Introduction to NIH
• No surgical institute creates challenge for broad surgical studies

• Non-NIH federal funding
 – Department of Defense
 – National Science Foundation
 – Agency for Healthcare Research and Quality
 – Patient-Centered Outcome Research Institute
• 35 – 65% less peer-review activity by surgeons

• 3,311 participants in 142 panels with < 2% surgeons
Study Section Bias

- Don’t believe protected time
- Don’t acknowledge methodological expertise
 - You have to have PhDs on the team
- Don’t understand career paths and culture
 - Publication record outpaces scientific training
- May not have the clinical expertise to understand clinical impact (or lack thereof)
- KNOW YOUR REVIEWERS AND WRITE FOR THE RIGHT AUDIENCE!!
NIH Overview

<table>
<thead>
<tr>
<th>Types of Grants</th>
<th>Examples of Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T and F series</td>
<td>T32, F32, F33</td>
<td>Residency and post-doctoral fellowship training awards</td>
</tr>
<tr>
<td>K series</td>
<td>K08/K23, K 24, K99</td>
<td>Career development awards</td>
</tr>
<tr>
<td>R series</td>
<td>R03, R01, R21</td>
<td>Research grant programs</td>
</tr>
<tr>
<td>P series</td>
<td>P01, P20, P30, P50</td>
<td>Large, multi-project efforts that include a diverse array of research activities</td>
</tr>
</tbody>
</table>
NIH Research Grants: R01, R03, R21

- **What is the scale/scope of the project?**
 - Collection of preliminary data?
 - Pilot or feasibility study?

- **What are the qualifications of the investigator?**
 - Independent?
 - Track record?

[Diagram showing Scale/scope of the project, with Small scale study that can be completed in 2 years R03, Exploratory project R21, and Project with preliminary data R01.]

http://grants.nih.gov/grants/funding/funding_program.htm#RSeries
<table>
<thead>
<tr>
<th>Grant</th>
<th>Number of years of award</th>
<th>Funds</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01 Research Project Grant Program</td>
<td>3-5 years</td>
<td>Up to $500K per year</td>
<td>Discrete, specified, circumscribed research project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preliminary data is generally required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All NIH Institutes and Centers (ICs)</td>
</tr>
<tr>
<td>R03 Small Grant Program</td>
<td>2 years</td>
<td>Up to $50,000 per year</td>
<td>Short project:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pilot or feasibility studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Collection of preliminary data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Secondary analysis of existing data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Small, self-contained projects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Development new technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Used by more than ½ ICs</td>
</tr>
<tr>
<td>R21 Exploratory/Developmental Research</td>
<td>2 years</td>
<td>Combined budget not to</td>
<td>New, exploratory, and developmental research projects</td>
</tr>
<tr>
<td>Grant Award</td>
<td></td>
<td>exceed $275,000</td>
<td>No preliminary data is generally required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Used by most ICs</td>
</tr>
</tbody>
</table>

http://grants.nih.gov/grants/funding/funding_program.htm#RSeries
• Large, multi-project
• Diverse research activities
• i.e., Specialized Programs of Research Excellence (SPOREs) in Human Cancer (P50)

• New investigators can be given meaningful roles to play in center projects!
R01-Equivalent Grants
NIH: Transition to Independence

• **New Investigator:** has not competed successfully as PI for a substantial NIH independent research award

• **Early Stage Investigator (ESI):** new investigator within 10 years of completing terminal research degree or is within 10 years of completing medical residency (or the equivalent)

• ESI is only considered on traditional R01 grants

http://grants.nih.gov/grants/new_investigators/#earlystage
R01 Success Rates for New Grants

Established Investigator

First time applicant

Funding for K08/K23 Awards

K08 Applications and Awards: 44% funded in FY2017

K23 Applications and Awards: 34% funded in FY2017

DoD CDMRP

CDMRP Applications and Awards: 15% funded in FY2017
<table>
<thead>
<tr>
<th>Award Type</th>
<th>Total Reviewed</th>
<th>Total Funded</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit Review</td>
<td>466</td>
<td>111</td>
<td>24%</td>
</tr>
<tr>
<td>Career Development</td>
<td>22</td>
<td>9</td>
<td>41%</td>
</tr>
<tr>
<td>Pilot Studies</td>
<td>8</td>
<td>2</td>
<td>25%</td>
</tr>
</tbody>
</table>

https://www.research.va.gov/services/shared_docs/resources.cfm#5
Federal Funding Agencies

Annual Budget In Millions

- AHRQ
- DoD CDMRP
- PCORI

Budget Amounts:
- AHRQ: $400
- DoD CDMRP: $1,200
- PCORI: $600

$0, $200, $400, $600, $800, $1,000, $1,200

Association for Academic Surgery
Federal Funding Agencies

Annual Budget In Millions

- AHRQ
- DoD CDMRP
- PCORI
- NIH

Budget amounts range from $0 to $35,000 million.
Conclusions

• It takes time and resources to build a funded research program so be realistic

• Match your individual program and project to the right funding agency and grant mechanism

• Start local – CTSA, cancer center, other institutional awards

• But think BIG!
THANK YOU

greenberg@surgery.wisc.edu