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What is “statistics”? 

Merriam-Webster: a branch of mathematics 

dealing with the collection, analysis, 

interpretation, and presentation of masses of 

numerical data 

Google: the practice or science of collecting and 

analyzing numerical data in large quantities, 

especially for the purpose of inferring 

proportions in a whole from those in a 

representative sample. 

 synonyms: data, facts and figures, numbers, 

information, details 



Why Do Surgeons Need to Know About 

Statistics? 

• Understand literature for clinical care 

• Develop appropriate research questions and 

approaches 

• Communicate with statisticians and other 

scientists 

 



Goals of this talk 

• Will help with some vocabulary 

• Demonstrate some skills for communicating 

intelligently with biostatisticians, analysts, and 

others 

• Encourage you to learn more 



Disclaimers 

• I am not a biostatistician 

• Will not teach you to do statistics today 

• There will be almost no numbers or complex 

equations presented 

• No test at the end 



From observation to understanding 

• Observations create data 

– Experimental 

– Ecological 

• Data can be truth but not necessarily so 

– Role of chance 

– Role of bias 

– Reliability of observations 



Define your data 

• Continuous 

• Categorical 

– Binary 

– Ordinal 

– Nominal 

• Dependent vs Independent Variables (e.g. 

Outcome vs Predictor) 

 



Definitions 

• Null hypothesis: there is no difference in 

outcome between the two exposures 

• Type I error = false rejection of the null 

hypothesis (α) 

• Type II error = false acceptance of the null 

hypothesis (β) 

• Power = 1- β 



When should you engage with a 

statistician? 

• Early and often! 

• When writing protocol or proposal 

• Design analysis ahead of data collection 

• Ensure that methods are able to answer the 

question that you have 

– Power 

– Types of data 



How can my study be powerful? 

• Power = 1- β 

– Set at 80 (pilot) – 95% (final, conclusive study) 

– 90% is accepted power for NIH funding 

• Goal is to minimize both Type I & II error to 

maximize the chance that observation is true 

 



Power/Sample Size Calculations 

• You need 3 of the following 4: 

– Sample size (N) 

– Power (1 – β)  

– Pre-specified surety (α) 

– Effect size 

• What is effect size? 

– Difference between 2 means, times, or proportions 

– Based on pilot data, best guess, “minimum clinical 

significance”  



Power/Sample Size Calculations 

• A priori analysis 

– Determine the sample size necessary to detect a 

clinically important effect with pre-specified surety 

– Determine the chance that with a given sample size, 

a clinically significant effect can be detected 

– Determine the magnitude of the effect size that can 

be detected with a pre-specified surety and sample 

size 

• Post hoc analysis 

– Once the study is done, determine the probability 

that the conclusion is correct            

        *Orav, 2002 



What is significant? 

• Statistical significance 

– Data are extreme enough to reject null hypothesis at 

present level of significance (α), typically 0.05 

• Clinical significance 

– Is the level of difference identified meaningful for 

clinical use 

– Varies by instance 

– Take into account imprecision and generalizability 

– Different for medicine and public health 

 



0.05 or bust! 

• A p-value is the conditional probability of 

obtaining the results in hand if the null 

hypothesis is true 

• In plain English, how likely are you to get these 

results if there is truly no difference? 

• Significance (α) is set a priori and represents the 

likelihood of falsely rejecting the null hypothesis 

 

 



Some Basics for Analysis 

• Is the outcome categorical or continuous? 

• Is the predictor categorical or continuous? 

• Is the data paired? 

– Sequential measurements made on the same subject 

• HR before and after medication X is given 

– Need to account for the fact that these are likely to be 

more highly correlated 

– If do not do paired analysis, you can introduce bias 

into significance of results 



Some Basics for Analysis 

• Is the data normal? 

– If yes, then  

• Parametric tests = Assumes that the data are drawn from a 

normal distribution 

– If no, then  

• Non-parametric = No such assumption 

– Based on the rank order 

• Transform data to make it normal and use a parametric test 

– Logarithm, square root, reciprocal 



Fig 2 Skewed 

Fig 1 Normal 

Greenhalgh, BMJ 1997;315:364-366  

http://bmj.bmjjournals.com/content/vol315/issue7104/images/large/gret04hr.f2.jpeg
http://bmj.bmjjournals.com/content/vol315/issue7104/images/large/gret04hr.f3.jpeg


Univariate Analysis 

• Single outcome with single predictor 

• Many different tests, depending upon: 
– Number of groups 

– Relationship of groups 

– Nature of outcome and predictor (discrete, normal, 
non-normal) 

– Examples: Chi-Square, Fisher exact, t-test, Wilcoxan 
Rank Sum, ANOVA, Spearman, Pearson, Kruskal-
Wallis, McNemar 
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Multivariable modeling 

• Build a model that relates the predictors to the 
outcome through a mathematical equation 
– Adjust for confounders 

– Build a prediction model 

• Types of multivariable modeling 
– Linear regression 

– Logistic regression 

– Cox regression 

 

 



Validity 

• Internal validity – do the results represent a real 

relationship? 

• External validity – can the study be applied to 

“real life”? 



Biases 

• Selection bias 

– Selection affects external validity 

– Selection bias affects internal validity 

• Information bias 

– Misclassification bias 

• Differential misclassification changes findings 

• Random misclassification reduces power 

– Recall bias 

– Reporting bias 

– Surveillance bias 

 



Confounding 

• An exposure is a confounder if: 

1. It is a risk factor for disease and 

2. It is associated with A but not a result of A 

• Example 

– Coffee drinkers have a higher rate of pancreatic 

cancer 

– However, this is because cigarette smoking, a 

known risk factor for pancreatic cancer, is more 

prevalent amongst heavy coffee drinkers 



Approaches to confounding 

• Matching 

• Stratification 

• Adjustment 

• Capture of additional data  



Statistics are a lens 

• Analysis isn’t something that happens after data 

collection 

• Early input from statistical colleagues important 

• Understanding biases and confounding essential 

to interpreting results 

• Many opportunities to expand understanding 



Thank You 

• abhaynes@mgh.harvard.edu 

 

 

mailto:abhaynes@mgh.harvard.edu


Use this slide if you need to transition 

between topics. 
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